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EVEN TURING MACHINES CAN COMPUTE UNCOMPUTABLE FUNCTIONS

B. Jack Copeland

ABSTRACT

Accelerated Turing machines are Turing machines that perform tasks

commonly regarded as impossible, such as computing the halting function.

The existence of these notional machines has obvious implications

concerning the theoretical limits of computability.
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1.  Introduction

Neither Turing nor Post, in their descriptions of the devices we now call

Turing machines, made much mention of time (Turing 1936, Post 1936).1

They listed the primitive operations that their devices perform - read a

square of the tape, write a single symbol on a square of the tape (first

deleting any symbol already present), move one square to the right, and so

forth - but they made no mention of the duration  of each primitive

operation. The crucial concept is that of whether or not the machine halts

after a finite number  of operations.  Temporal considerations are not

relevant to the functioning of the devices as described, nor - so we are

clearly supposed to believe - to the soundness of the proofs that Turing

gave concerning them.  Things are very different in the case of the boolean

networks of McCulloch and Pitts (1943) and Turing (1948), where the

duration of each primitive operation is a critical factor.  Turing's boolean

networks were synchronised by a central clock and each primitive

operation took one 'moment' of clock time (1948: 10).2  When working

with Turing machines it is no doubt intuitive to imagine each primitive

operation to be similarly fixed in duration, but this is no part of the

1My thanks to the audience of a talk I gave at King's College London in

October 1995, whose vigorous questioning brought me to think seriously

about (what I now call) accelerated Turing machines, and in particular to

Richard Sorabji and Mark Sainsbury. Thanks also to Diane Proudfoot, Peter

Farleigh, Philip Catton, Chris Bullsmith and Neil Tennant for valuable

comments and discussion.

2Turing's boolean networks and his connectionist project involving

them are described in Copeland and Proudfoot 1996.
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original conception.  No conditions were placed on the temporal patterning

of the sequences of primitive operations.

Bertrand Russell, Ralph Blake and Hermann Weyl independently

described one extreme form of temporal patterning.  Weyl considered a

machine (of unspecified architecture) that is capable of completing

an infinite sequence of distinct acts of decision within a finite time; say, by

supplying the first result after 1 / 2  minute, the second after another 1 / 4

minute, the third 1 / 8  minute later than the second, etc.  In this way it

would be possible ... to achieve a traversal of all natural numbers and

thereby a sure yes-or-no decision regarding any existential question about

natural numbers.  (Weyl 1927: 34; English translation from Weyl 1949:

42.)

It seems this temporal patterning was first described by Russell, in a

lecture given in Boston in 1914. In a discussion of Zeno's paradox of the

race-course Russell said 'If half the course takes half a minute, and the

next quarter takes a quarter of a minute, and so on, the whole course will

take a minute' (Russell 1915: 172-3).  Later, in a discussion of a paper by

Alice Ambrose (Ambrose 1935), he wrote:

Miss Ambrose says it is logically impossible [for a man] to run through the

whole expansion of π .  I should have said it was medically  impossible.  ...

The opinion that the phrase 'after an infinite number of operations' is self-

contradictory, seems scarcely correct.  Might not a man's skill increase so

fast that he performed each operation in half the time required for its

predecessor?  In that case, the whole infinite series would take only twice

as long as the first operation.  (1936: 143-4.)

Blake, too, argued for the possibility of completing an infinite series of

acts in a finite time:
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A process is perfectly conceivable, for example, such that at each stage of

the process the addition of the next increment in the series 1 /2 , 1 /4 , 1 /8 ,

etc., should take just half as long as the addition of the previous increment.

But ... then the addition of all the increments each to each shows no sign

whatever of taking forever. On the contrary, it becomes evident that it will

all be accomplished within a certain definitely limited duration. ... If, e.g.,

the first act ... takes 1/2 second, the next 1/4 second, etc., the [process] will

... be accomplished in precisely one second. (1926: 650-51.)

Imposing the Russell-Blake-Weyl temporal patterning upon a Turing

machine produces an accelerated Turing machine.  These are Turing

machines that perform the second primitive operation called for by the

program in half the time taken to perform the first, the third in half t h e

time taken to perform the second, and so on.3  Let the time taken to

3Stewart (1991: 664-5) gives a cameo discussion of such machines.

Related to accelerated Turing machines are the anti de Sitter machines of

Hogarth (1994) and the Zeus machines of Boolos and Jeffrey (1980: 14-15).

The term 'anti de Sitter machine' is from Copeland and Sylvan 1997. Hogarth's

own term for his machines, 'non-Turing computers', is inappropriate in view

of the discussion given in the present paper.  Copeland and Sylvan 1997

discusses the relationship between Hogarth's machines and Turing's O-

machines (the latter are described in section 3 below).  Boolos and Jeffrey

envisage Zeus being able to act so as to exhibit the Russell-Blake-Weyl

temporal patterning (1980: 14).  By an extension of terminology (which

Boolos and Jeffrey do not make) a Zeus machine  is any machine exhibiting the

Russell-Blake-Weyl temporal patterning.  All accelerated Turing machines are

Zeus machines, but not vice versa.  For example, an O-machine that exhibits
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perform the first operation called for by the program be one 'moment'.

Since

1/2 + 1/4 + 1/8 + ... + 1/2n + 1/2n+1 + ...

is less than 1, an accelerated Turing machine can perform unboundedly

many primitive operations before two moments of operating time have

elapsed.

Since accelerated Turing machines are Turing machines, the

restricted quantifiers 'all Turing machines', 'some Turing machines' and 'no

Turing machines' have accelerated Turing machines among their range.

2.  Computing the halting function

Every Turing machine has a program of instructions 'hard wired' into

its head (the read/write device that has the tape passing through it).

By using some suitable system of coding conventions, the instructions of

any given Turing machine can be represented by means of a single (large)

binary number.  The number is obtained by first coding each individual

instruction into a sequence of binary digits n digits long (for a fixed n) and

then running all these together into one long string, with the code for the

first instruction at the far left and for the last instruction at the far right.

Call this number the machine's program number.  (Such systems of coding

conventions are known as assembly languages.)
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Before a Turing machine is set in motion some sequence of binary

digits is inscribed on its tape.4  This is the input, the data upon which the

machine is to operate coded in binary form.  Of course, this sequence of

binary digits, as well as being a representation of the data (which may be

non-numeric: sentences of English, for example), is also a representation of

a number.  Call this number the machine's data number.  One may speak of

the machine being set in motion bearing  such-and-such a data number.

The famous 'halting function' H is a function taking a pair of integers

as arguments and having either 0 or 1 as its value (Turing 1936).  It may

be defined as follows, for any pair of integers x and y:  H(x,y)=1 if and only

if x is the program number of a Turing machine that eventually halts if set

in motion bearing data number y;  H(x,y)=0 otherwise.  Notice that if the

integer x is not  a program number of a Turing machine then H(x,y)=0 for

every choice of y; and if x is a program number, say of Turing machine t,

then H(x,y)=0 if and only if t fails to halt when set in motion bearing y.

A machine that could compute the values of the halting function would

be able to inform us, concerning any given Turing machine, whether or not

that machine would halt when set in motion bearing any given data

number.  Such a machine, however, could not itself be a Turing machine:

Turing was able to prove that no Turing machine can compute the values

the Russell-Blake-Weyl patterning - such as the machine O
H

 of section 3 - is a

Zeus machine but is not a Turing machine.

4We wish to reason concerning the set of all Turing machines, but

without loss of generality we may consider in its stead the set of Turing

machines employing the binary alphabet, mark (1) and blank (0).
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of the halting function for all integers x and y (1936, section 11).  This

result is commonly known as the halting theorem.

Yet it seems that an accelerated Turing machine would be able to so

inform us, in contradiction to Turing's result.

The accelerated Turing machine in question is an accelerated universal

Turing machine.  A universal Turing machine can simulate the behaviour

of any other Turing machine.  Let t be the machine that is to be simulated.

The universal machine is set in motion with t's program number followed

by t's data number inscribed on its tape (which is to say, is set in motion

bearing the data number formed by writing out the digits of t's program

number followed by the digits of t's data number).5  Thereafter the

universal machine will perform every operation that t will, in the same

order as t (although interspersed with sequences of operations not

performed by t), and will halt just in case t does.  (This idea of

programming a machine by entering symbolically encoded instructions

into its rewritable memory, and the associated concept of universality,

were Turing's greatest contributions to the development of the digital

computer.6)

To produce a machine that can compute the values of the halting

function for all integers x and y one simply equips an accelerated universal

Turing machine with a signalling device - a hooter, say - such that the

hooter blows when and only when the machine halts.7  To compute the

5Also included is some code to serve as punctuation between the two

numbers .

6I defend this historical claim elsewhere (Copeland 1998).

7 Turing and his colleagues enjoyed the possibilities afforded by the

hooter of the Manchester Mark I computer (the world's first fully
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value of the halting function for a given machine t,  one writes out the

digits of t's program number p followed by the digits of t's data number d

on the accelerated universal machine's tape and sets it in motion.  If t does

halt then it does so having performed n primitive operations (where n is

some integer), and no matter how large n is, the accelerated universal

machine copies t's behaviour, blow by blow, up to and including the act of

halting, within two moments of running time.  That is to say, if the hooter

blows within two moments of the start of the simulation then H(p,d)=1,

and if it remains quiet then H(p,d)=0.  Given any Turing machine bearing

any data number, the accelerated universal machine can inform us

whether or not that machine halts.8  (This is so even where the given

machine is the accelerated universal machine itself; it informs us whether

or not it itself halts when set in motion bearing any data number by

electronic stored-program digital computer).  Turing's programming

manual for the Manchester machine describes the hooter as producing 'a

steady note, rich in harmonics' (1951: 24). The machine's order-code

contained an instruction to send a single pulse to the hooter; a train of

pulses, timed correctly, would produce a note. Turing displays a loop of

two instructions producing middle C, and a loop of three instructions

'which gives a slightly louder hoot a fifth lower in frequency' (ibid.). The

first program of any significant size to run on the machine - written by

Christopher Strachey at Turing's behest - brought its activity to a close by

playing the National Anthem on the hooter.

8 The accelerated universal machine is coded to enter an infinite loop

when x is not the program number of a Turing machine, thus correctly

returning 0 as the value of H.
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signalling to us if it does so (if there is to be a hoot it must come within the

first two moments of running time).)  So we appear to have an example of

a Turing machine that can compute a function that no Turing machine can

compute.

It would be easy to conclude from this apparent contradiction that an

accelerated universal Turing machine is a logical impossibility.  To do so

would not be correct, however.  There is in fact a mistake in the reasoning

leading to the contradiction.

Let me call the machine just described H  (for 'halting-function

machine').  H is not in fact a Turing machine, for a reason that has nothing

to do with its accelerated nature.  H is a system consisting of a Turing

machine plus additional equipment (most conspicuously the hooter), and so

is more  than a Turing machine.  In particular, H 's program of instructions

is not a Turing machine program.  Among H 's primitive operations is the

act of blowing the hooter and H 's program of instructions includes

provision for this operation to be performed if certain conditions are met,

whereas no Turing machine program contains any such instruction.  Since

H is not a Turing machine, the fact that this particular machine c a n

compute the halting function in no way contradicts the proposition that no

Turing machine can do so. (A close cousin of H  that is a Turing machine is

discussed in section 5.)

The knowledge that H is not a Turing machine is not quite sufficient to

produce conviction that there is no paradox here.  For might not the

considerations used in the proof that a Turing machine cannot compute the

halting function also apply to H , enabling one to infer that H both does and

does not compute the halting function?  A review of the crucial ideas

underlying the proof of the halting theorem will show that this is not the

case.
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The proof takes the form of a reductio ad absurdum.  Assume that

there is a Turing machine that computes the halting function; call it h.

That is to say, for any two integers m and n, if h is set in motion bearing

the data number produced by writing out the (binary) digits of m followed

by the (binary) digits of n, then h will halt with 1 under its head if and

only if H(m,n)=1, and h will halt with 0 under its head if and only if

H(m,n)=0.  The argument proceeds by introducing a further machine, h2,

which can be derived from h by two simple modifications.  Provably, if h

exists then h2 exists.  But it is easily shown that h2 cannot exist, for if it

does then a certain contradiction is true.  Therefore h cannot exist either.

The first modification of h produces a machine h1 which, when set in

motion bearing the same data number as h, halts with 0 under its head if

and only if h does so, but which never halts with 1 under its head.  The

modification consists of adding some instructions to h's program in order to

make the head shuffle endlessly back and forth between some pair of

adjacent squares of the tape in the case where it would otherwise have

halted with 1 beneath it.9

In order to summarise the key facts about h and h1 it is useful to

introduce some notation.  I will use 'mö0n' ['mö1n'] to mean 'machine m

halts with 0 [1] under its head when set in motion bearing data number n'

(for short, 'm halts on 0 [1] given n'); 'mön' to mean 'm halts when set in

motion bearing n'; and 'iflj' (pronounced 'i concatenated with j') to indicate

the number formed by first writing out the digits of i and then the digits of

j (placing the first digit of j to the right of the last digit of i).10  'ü ' is the

9Further details of this modification may be found in many textbooks,

for example Minsky 1967: 149 and Boolos and Jeffrey 1980: 17.

10See note five .
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biconditional, '√ ' is exclusive disjunction, '— ' is negation;   x and y are

integers.

(1)  for every x, y:  hö1xfly ü  H(x,y)=1

(2)  for every x, y:  hö0xfly ü  H(x,y)=0

(3)  for every x:  höx ü  hö1x √  hö0 x

(4)  for every x:  h1öx ü  hö0x.

(1) and (2) are true in virtue of the hypothesis that h computes the halting

function, (3) is true in virtue of the binary nature of h, and (4) in virtue of

the way h1 is constructed from h.

Next h1 is modified to produce h2.  h2 is identical to h1 except that h2

first writes out a copy of its data number, beginning on the square

immediately following the last digit of the initial occurrence of the data

number.  Thereafter h2 behaves exactly as h1.  So if h2 is set in motion

bearing the data number m then once the copying phase is completed, h2

will behave exactly as h1 behaves when set in motion bearing the data

number mflm .

So

(5)  for every x:  h2öx ü  h1öx flx .

Let us investigate the effect of setting h2 in motion bearing its own

program number, p, as data number.

(6)  h2öp ü  h1öp flp (from 5)

(7)  h1öp flp ü  hö0p flp (from 4)

(8)  hö0pflp ü  H(p,p)=0 (from 2)

So (9)  h2öp ü  H(p,p)=0 (from 6-8, by the transitivity of 

 implication).

Now for the other arm of the contradiction.  Since p is the program number

of h2 and h2 is a Turing machine, the definition of the halting function

gives
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(10)  H(p,p)=0 ü  —h2öp.

Combining (9) and (10) produces

(11) h2öp ü  —h2öp .

This is a contradiction (Aü—A and A&—A being interderivable in the

propositional calculus).  So the assumption leading to the contradiction -

that some Turing machine can compute the halting function - is false.

Precisely where does this same train of reasoning fail if applied to H?

H does its work of simulating a given Turing machine t by inspecting t's

program number and obeying each instruction written there in the order

in which they are written, interpolating additional operations into the

sequence whenever necessary.  One operation that certainly must be

interpolated is that of blowing the hooter.  The table of instructions that

characterises H 's behaviour contains an entry telling H to perform this

operation immediately before it halts (which it will if and only if t does).

Thus if H is to be assigned a program number, the coding scheme that

leads from tables of instructions to binary program numbers must be

extended with a word designating this operation, and so H 's program

number, q say, will be distinctively different from the program number of

any Turing machine.  It is the fact that H 's program number is not a

program number of a Turing machine that stalls the foregoing train of

reasoning as applied to H .

In fact, H does not halt when set in motion bearing qflq.  This is

because it is straightforwardly the case - from the definition of the halting

function given earlier - that H(q,q)=0.  Since H computes the halting

function (indicating the value 1 by hooting and the value 0 by not hooting):

(12)  H(q,q)=0 ü  —Höqflq.

So we can infer, perfectly correctly, that —Höq flq .
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The halting behaviour of h and its derivatives bears messages, spelt

out in (1) and (2), concerning the halting behaviour of the Turing machine

whose program number appears in the data number supplied to h (or

derivative).  Thus the means of tying the self-referential knot and

producing the contradiction.  The hooting/non-hooting behaviour of H -

and of any suitable derivative of H - also bears such messages about

Turing machines, but since H and its derivatives are not Turing machines

the messages cannot come to be about the halting behaviour of these

machines themselves.  The absence of a hoot within the prescribed period

when, for some integer x, H is fed xflx, bears a disjunctive message: either

x is not the program number of a Turing machine or the Turing machine

with this number does not halt when set in motion bearing x.  No such

disjunction can be pressed into making a statement about the halting

behaviour of H itself nor of any derivative of it that is not a Turing

machine.

3.  Turing's O-machines

Let me render these considerations concrete by investigating a

machine H 2 that bears the same relationship to H as h2 bears to h.

Turing introduced the concept of an O-machine in section 4 of his PhD

thesis (1938).  (The thesis, which was written at Princeton under the

supervision of Church, was subsequently published as Turing (1939)).  An

O-machine is a Turing machine equipped with an additional device - a

black box - that, when presented with arguments of some non Turing-

machine-computable function, returns the corresponding values of this

function.  For example, the black box may respond to an input of a pair of

integers, x and y, with the corresponding value of the halting function,
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H(x,y), for every x and y.  Turing called such black boxes 'oracles'.  He

remarked that an oracle works by 'unspecified means', saying that we

need 'not go any further into the nature of [an] oracle' (1939: 173).  A 'call

to the oracle' is a primitive operation of an O-machine.

One way of specifying a mechanism by means of which an oracle can

do its work is in terms of H .  O
H

 is an O-machine of which H  itself serves as

oracle.  O
H 

consists of H operating in conjunction with a universal Turing

machine T equipped with a clock and with resources for delivering a data

number to H 's tape, for setting H  in motion, and for detecting and

recording the presence or absence of a signal within two moments of H ' s

work commencing.  O
H 

will be described as being set in motion bearing

data number x just in case T is so set in motion, and to halt (with 1 [0]

under its head) just in case T halts (with 1 [0] under its head).  O
H 

is able

to compute numerous non Turing-machine-computable functions, for a

wide assortment of such functions is reducible to the halting function, in

the sense that any machine that is able to compute the halting function is

able to compute them also.

To make matters specific, let O
H 

be arranged so that its halting

behaviour when set in motion bearing a data number xfly (which is to say,

the halting behaviour of its component machine T when set in motion

bearing this data number) is as follows:  O
H 

halts with 1 under its head

just in case the oracle H  delivers a signal when fed xfly and O
H 

halts with 0

under its head just in case the oracle delivers no signal when fed xfly.  So:

(1')  for every x, y:  O
H

ö1xfly ü  H(x,y)=1

(2')  for every x, y:  O
H

ö0xfly ü  H(x,y)=0.

H 1 is obtained from O
H 

by exactly the moves that yield h1 from h.  So

(4')  for every x:  H1öx ü  O
H

ö0x.
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H 1 is modified to produce H 2 in just the way that h1 is modified to produce

h2.  So

(5')  for every x:  H2öx ü  H1öx flx .

As with h2, let us consider the effect of setting H 2 in motion bearing its

own program number, r, as data number.  We obtain

(6')  H 2ör ü  H 1örflr (from 5')

(7')  H 1örflr ü  O
H

ö0r flr (from 4')

(8')  O
H

ö0rflr ü  H(r,r)=0 (from 2')

(9')  H2ör ü  H(r,r)=0 (6'-8', transitivity).

Since r is not the program number of a Turing machine, H(r,r) is in fact 0.

Thus we can conclude that H 2 does halt if set in motion bearing its own

program number as data number.

There is no hope of also showing that H 2 does not  halt if set in motion

bearing its own program number as data number.  The inference to (10)

requires the knowledge that p (h2's program number) is the program

number of a Turing machine, for it is only if this is so that H(p,p) being 0

entails that the Turing machine so numbered does not halt when  fed p.  It

is precisely this inference that is blocked in the case of H 2.  h2's halting

when fed p bears a message about the behaviour of the Turing machine

whose program number is p, namely that it does not halt when fed p, but

H 2's halting when fed r bears no message about the halting behaviour of

the machine whose program number is r.

O-machines form an infinite hierarchy.  At the bottom are the first-

order O-machines: the O-machines which, like O
H

, can compute all Turing-

machine-computable functions and all functions reducible to the halting

function H(x,y) but no other functions.  The halting function for first-order

O-machines, H1(x,y), is defined as follows (for all integers x and y):

H 1(x,y)=1 if and only if x is the program number of a first-order O-machine
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that halts if set in motion bearing data number y; H1(x,y)=0 otherwise.

That no first-order O-machine can compute the halting function for first-

order O-machines is shown by much the same argument as that which

establishes that no Turing machine can compute the halting function for

Turing machines.  It is the inability of H  and O
H

 to compute the halting

function for first-order O-machines - while nevertheless being able to

compute the halting function for Turing machines - that preserves them

from inconsistency.

4. Some myths about computability

That Turing was the first to consider computing devices which

compute more than the machines of his 1936 paper is less widely known

than it should be.  Indeed, the so-called Church-Turing thesis maintains

that Turing machines form a maximal class of idealised computing devices,

in the sense that the functions computable by Turing machines allegedly

exhaust the functions computable by idealised computing devices of any

form (which is to say, exhaust the functions that are computable both in

practice and in principle).  Thus, for example, Minsky maintains that the

operations of a Turing machine 'give rise to the full range of possible

computations' (1967: 112), and Dennett that 'anything computable is

Turing-machine computable' (1978: 83).  Fodor restricts the claim to

computations on discrete symbols:  'Although the elementary operations of

the Turing machine are restricted, iterations of the operations enable the

machine to carry out any well-defined computation on discrete symbols

(1981: 130; see also 1983: 38-9).  McArthur writes: 'The limits of Turing

machines, according to the Church-Turing thesis, also describe the

theoretical limits of all computers' (1991: 401).  Since there can
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presumably be no question but that O
H 

computes  (and, moreover, on

discrete symbols), O
H 

forms a clear counterexample to this thesis.  Despite

a seemingly widespread belief to the contrary, neither Church nor Turing

advanced this thesis.  (The relevant texts by Church and, particularly,

Turing are examined in Copeland 1996.)

The erroneous thought that, in his paper of 1936, Turing showed

something fundamental concerning the limits of what can be computed by

machine enjoys a wide currency.  Thus, for example, the ‘Oxford

Companion to the Mind’ states: 'Turing showed that his very simple

machine ... can specify the steps required for the solution of any problem

that can be solved by instructions, explicitly stated rules, or procedures'

(Gregory 1987: 784). Dennett maintains that 'Turing had proven - and this

is probably his greatest contribution - that his Universal Turing machine

can compute any function that any computer, with any architecture, can

compute' (1991: 215). Sterelny asserts 'Astonishingly, Turing was able to

show that any procedure that can be computed at all can be computed by a

Turing machine. ... Despite their simple organisation, Turing machines are,

in principle, as powerful as any other mode of organizing computing

systems' (1990: 37, 238). (Astonishingly, indeed!) In similar vein, Paul

Churchland writes: 'The interesting thing about a universal Turing machine

is that, for any well-defined computational procedure whatever, a

universal Turing machine is capable of simulating a machine that will

execute those procedures. It does this by reproducing exactly the

input/output behaviour of the machine being simulated' (1988: 105;

Churchland's italics).  Also: Turing's 'results entail something remarkable,

namely that a standard digital computer, given only the right program, a

large enough memory and sufficient time, can compute any  rule-governed

input-output function. That is, it can display any systematic pattern of



1 8

responses to the environment whatsoever' (Paul and Patricia Churchland

1990, p.26). Phillips, writing in the 'Handbook of Logic in Computer

Science', avers that 'Turing's analysis of what is involved in computation ...

seems so general that it is hard to imagine some other method which falls

outside the scope of his description ... so ... anything which can be

computed can be computed by a Turing machine' (Abramsky, Gabbay and

Maibaum 1992: 123).

Of course, Turing neither proved nor asserted that a universal Turing

machine ‘can compute any function that any computer, with any

architecture, can compute’.  Nor did he have a result entailing that a Turing

machine can display any systematic pattern of responses to the

environment whatsoever. Indeed, he had a result entailing the opposite.

The halting theorem entails that there are possible patterns of responses to

the environment, perfectly systematic patterns, that no Turing machine

can display.

Turing offered the Turing machine as an analysis of the activity of an

(idealised) human mathematician engaged in the process of computing a

real number unaided by any machinery (1936: 231).  His concern in 1936

was with the theoretical limits of what an unaided human mathematician

can compute, the whole project being directed toward showing, in answer

to a question famously raised by Hilbert, that there are classes of

mathematical problems whose solutions cannot be discovered by a

mathematician working mechanically.  Turing’s actual thesis, the Church-

Turing thesis properly so-called, that the limits of what an ideal human

mathematician can compute coincide with the limits of what a universal
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Turing machine can compute, is a thesis that carries no implication

concerning the limits of what a machine  can compute.1 1

Naturally, the crucial question is:  Are there real physical processes

that can be harnessed to do the work of Turing’s ‘oracles’?  If so,

computing machines that are forbidden by the thesis improperly known as

the 'Church-Turing thesis' can in principle be constructed.  Leaving the

issue of harnessability to one side, I think it would be profoundly

surprising if the physics of our world can fully be given without departing

from the set of Turing-machine-computable functions.  These functions

have been the focus of intense interest during the brief six decades since

Turing delineated them, but the explanation of this is surely their extreme

tractability - together, of course, with the fact that they have made many

people a lot of money - rather than that some inherent suitability for

exhaustively describing the structure and properties of matter is

discernible in them.  These functions are the fruit of Turing’s analysis of

the activity of an idealised human mathematician working mechanically

with pencil and paper.  It is simple anthropomorphism to expect such

functions to suffice also for characterising the behaviour of the rest of the

universe.  It would be - or should be - one of the greatest astonishments of

science if the activity of Mother Nature were never to stray beyond the

bounds of the Turing-machine-computable functions.

5.  Internal and External Computability

There exists an accelerated Turing machine H T that is capable of

mimicking H .  As with H , HT is set in motion bearing the concatenation of a

11See further my 1996, 1997a, 1997b.
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pair of integers.  H T's first actions are to position the head over the first

square to the left of the input string - call this the designated square - and

print 0 there.  The remainder of H T's program is identical to H 's except that

the instruction to blow the hooter is replaced by a block of instructions

that cause the head to move back to the designated square and change the

0 to 1 before halting.  Since H  computes the halting function for Turing

machines and H T mimics H  exactly (save for writing 1 on the designated

square instead of hooting), it follows that H T computes this function too.

For any x and y, if H T is set in motion bearing the data number xfly, the

value H(x,y) can be read from the designated square at the end of the

second moment of operating time.  But according to the halting theorem,

the halting function is not Turing-machine-computable.  A contradiction, it

seems.

At bottom, the reason that this contradiction cannot validly be derived

is that the halting theorem is in fact a somewhat weaker proposition than

is often supposed.  It is time to be more precise in stating the halting

theorem.

Standardly, to say that a function f(x) each of whose values is 0 or 1 is

Turing-machine-computable is to say that there is a Turing machine which,

if set in motion bearing x as data number (for any x in the function’s

domain), will eventually halt with its head resting on the corresponding

value of the function.  (Similarly for functions of more than one argument

and for functions whose values include integers other than 0 and 1.  In the

latter case it is stipulated that the head should halt resting on, say, the last
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digit of the function’s value.)  The two pioneering papers, Turing 1936 and

Post 1936, are both clear on this crucial matter.1 2

The halting theorem is this: in the sense just given the halting function

for Turing machines is not Turing-machine-computable.  Only this much

was proved by the reductio ad absurdum presented earlier, for it is crucial

to the construction employed in the reductio that the machine h should

halt with the value of the function, 0 or 1, beneath its head.  Unless this is

so the recipe for obtaining h1 from h is inapplicable.

It is essential to distinguish between two senses in which a function

may be said to be computable by a given machine, which I will refer to as

the internal  sense and the external sense, respectively.  A function is

computable by a machine in the internal sense just in case the machine can

produce values from arguments (for all arguments in the domain), 'halting'

once any value has been produced, where what counts as 'halting' can be

specified in terms of features internal to the machine and without

reference to the behaviour of some device or system - e.g. a clock - that is

external to the machine.  (This condition on the nature of 'halting'

behaviour will be referred to as the internalist condition.)  Numerous

behaviours on the part of a machine can satisfy this condition, for example

complete cessation of activity, or playing the National Anthem13, or writing

any sequence of digits in a certain location.  A function is computable by a

machine in the external sense just in case the machine can produce values

from arguments (for all arguments in the domain), displaying each value at

12Post gave an explicit statement to that effect (1936: 103).  Turing

offered no explicit statement but that such was his intention is evident

(see especially 1936: 247).

13See note seven .
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a designated location some pre-specified number of moments after the

corresponding argument is presented. The machine may or may not 'halt',

in the internalist sense, once a value has been displayed.

For example, it is in this latter sense that a given function may be

computable by a logic circuit (one of Turing’s own boolean networks, for

instance).  The value of the function is displayed at some designated node

n moments after the argument is presented at the input nodes (mutatis

mutandis for functions of more than one argument and functions whose

values require more than one binary node for their expression).  Before

and after that critical time, the activity of the output node may afford no

clue as to the desired value.

Even where the logic circuit never stabilises (in the sense of

eventually producing an output signal that remains constant until such

time as the input signal alters) it nevertheless computes values of a

function in the external sense if it displays them at the designated location

at the prespecified times.  The same is true of neural networks.  A

particular network may compute the values of a certain function in the

external sense even though the network never stabilises (a network

stabilises, or 'halts', if and only if after some point there is no further

change in the activity level of any of its units).

In some cases, a machine may compute the values of a function in

both senses, there being an n such that whenever an argument is

presented, the machine 'halts' displaying the corresponding value within n

moments, such 'halting' satisfying the internalist condition.  A machine that

computes a function in the external sense can readily be converted into

one that computes the function in both senses by the addition of a bell

triggered by an internal clock.  The bell rings when the value (or, as

appropriate, the last digit of the value) is produced, and the machine's
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ringing the bell constitutes its 'halting'.  Of course, adding a clock to a

machine may result in a machine not of the same type. A Turing machine

plus a clock is not a Turing machine.

The halting theorem speaks only of computability by a Turing machine

in the internal sense, not of computability in the external sense.  This is

what I meant when I said earlier that the halting theorem is weaker than

is often supposed.  A Turing machine cannot compute the halting function

for Turing machines in the internal sense - as was proved earlier - but this

same function is computable by a Turing machine in the external sense, as

witnessed by H T.  A machine derived from H T by the addition of a clock

and bell computes the function in the internal sense.  The function is

computable by H  in the external sense but not in the internal sense.  It is

computable by an O-machine in the internal sense, as witnessed by O
H .

There are functions that can be computed by higher-order O-machines in

the internal sense that cannot be computed by a first-order O-machine -

such as O
H

 - in either the internal or the external sense.

While it may grate on one’s ear to say so, it is nevertheless perfectly

true that (even) a Turing machine can compute functions (in the external

sense) that are not Turing-machine-computable (in the standard, internal

sense).  Again, so much the worse for the Church-Turing thesis improperly

so-called, the claim that if a function can be computed at all then it is

Turing-machine-computable (in the standard, internal sense).
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